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Field statistics of two vectorially superposed wave populations
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Field statistics of observed waves and radiation constrain the physics of the emission process and source
region. However, data often contain two or more superposed signals or a signal superposed on a noise
background, creating difficulties for interpretation. Here, the combined probability distribution of the field
formed by vector superposition of two signals, each with specified statistics, is written as a double integral with
integrable singularities. The analytic result and its numerical solutions for combinations of Gaussian and
lognormally distributed signals show that these predictions differ from those for field or intensity convolution
and from the individual wave distributions. At high fields, the combined distribution takes the qualitative form
of the dominant individual distributiofwhich is localized or otherwise extends to larger fig¢ldst develops
a significant tail at low fields due to vector superposition of almost antiparallel fields with similar magnitudes.

It is shown that very nearly power-law distributions can develop in significant field domains, despite neither
component distribution being power law. This is relevant to alternative interpretations in terms of self-
organized criticality and certain modulational wave instabilities. The formalism is then applied to observations
of the Vela pulsar, resulting in greatly improved fits to data and different interpretations. Specifically, the results
are strong evidence that stochastic growth the@®T) is relevant and that the approximate power-law
statistics found at some phases are not intrinsic but rather due to vector convolution of a Gaussian background
with a lognormal; the latter is interpretable in terms of SGT. The field statistics are consistent with the emission
mechanism being a direct linear instability or indirect generation via linear mode conversion of nonescaping
waves driven by a linear instability. They are inconsistent with nonlinear self-focusing instabilities generating
the observed pulsar radiation. This formalism and its results should also be widely applicable to other types of
wave growth in inhomogeneous media.
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[. INTRODUCTION related to disentangling the number of active processes
and/or sources contributing to observed field statistics, appli-
The field statistics of plasma waves and radiation arecation of this theory to the Vela pulsar, and discussion of the
emerging research areas of space physics, astrophysics, amdulting implications for the emission mechanism and
plasma physics. In contrast, Fourier, correlation, and othesource physics responsible for pulsar radio emissions.
studies of an emission’s temporal and frequency properties A number of theoretical predictions now exist for the field
are both conventional and long studied. Correlation analysestatistics of waves or radiation, each dependent on the emis-
for instance, are standard because they reveal dispersive agidn mechanism, source physics, and/or scattering/
scintillation effects due to scattering in and propagationpropagation effects. First, the usual model for wave growth
through inhomogeneous plasnidd. Emphasis on field sta- in plasmag2-4], involving spatially uniform secular ampli-
tistics is relatively new, however, and has followed from thefication at a constant rate until limited by nonlinear effects,
study of wave growth in inhomogeneous plasmas. predicts that the probability distribution of wave electric

Characterizing the bursting of observed signals in termg;g|qs E, P(E), should be uniformly distributed in 10§

of field s;atigtics is worthy in its own right as an analysis(Eloglo E here below the nonlinear threshold. Second, ra-
tQOI' but its importance for Qeveloplng physics-based th‘.aodiation from a large number of incoherently superposed
ries for natural phenomena is considerably stronger. Partic ources, or scattering by density irregularitidd, should
larly for remote observations, such as space and astrophysi- ' o A o .
cal sources wherén situ observations are not possible, produce Gaussian intensity distributions, where the intensity

2 . - . . . .
analyses of field statistics potentially open a new windo ~E B Third, self organ_|zed crmcahg(SOC) [5.6l, Wh'Ch.
into the source physics. As summarized in detail below, thé;iescrlbes the self-consistent evolution of a waves-particles-
reason is that the field statistics depend on the emissioRl@Sma background system near marginal stability, should
mechanisite) for the waves, the physics of the wave- produce a power-law distribution for energy releases with
particle-background plasma system in the souerel so on index close to—1 (but ranging from~-0.5 to —2).
the source plasma paramelerattering/propagation effects Fourth, pure stochastic growth theof$GT), which de-
between the source and observer, and whether one or mogéribes the evolution of a self-consistent wave-particle sys-
processes in a single source, or in multiple sources, contridem driven stochastically near marginal stability in a pre-
ute to the observed variability. Put in another way, theory-scribed inhomogeneous plasma background, predicts
data comparisons allow the active emission mechafsism lognormal statistic§7—11]. (Note that most natural plasmas
and source physics to be constrained by, and ideally inferredre expected to evolve to states close to marginal stability,
from, the observed field statistics. This paper presents theonyhere emission and absorption are closely balanced, due to
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operation of plasma instabilities and the large distances and

times available for relaxation.Fifth, the combination of E

SGT with nonlinear processes alters the field statistics prima- 2

rily near and above the lowest threshold figkd for the

nonlinear processes; if a nonlinear three-wave process re-

moves energy from the waves then the lognormal distribu-

tion exhibits a nonlinear cutoff ned&, with known analytic

form, while nonlinear self-focusing processes such as modu-

lational instability and wave collapse cause a power-law tail

to develop abové&, with P(E)<E™“ and« ranging from 3

to 7 [11-13, depending on the dimensionality, sha(io- 0

tropic versus oblate versus prolgtand subsonic/supersonic >
character of the collapsing wave packets. Sixth, waves driven E
stochastically from thermal levels by an instability, but suf- 1
ficiently weak to retain memory of their thermal past, can

also develop a power-law tgfll4,15. Finally, the elemen- FIG. 1. FieldsE, and E, have magnitudeg; andE; and an
tary burst theory(EBT) [16,17] involves systems in which 2angleé between them.

waves and particles interact self-consistently in growth site%y an integral with integrable singularities. This integral

but do not evolye. to a SGT state. The EBT systems haV%hows that the combined field statistics are generally differ-
exponential statistics.

SOC anplies widelv to bursty phenomena active over ent from the statistics obtained by direct convolution of ei-
. PP ely y P , Fher the intensity distributions or the field distributions be-
wide range of spatial, temporal, or energy scdlel with

applications including earthquakéas], condensed matter cause a vector field convolution is required. In Sec. Ill, the

physics[19], solar flareg20], auroral physics, and perhaps combined field statistics are investigated numerically for
pulsars[21],The Jovian 'S’ E)ursts also show,a power-law both Gaussian and lognormal distributions, showing that

flux distribution [22], for which SOC or driven thermal they are, in general, different from those of the individual

. . distributions or the results for intensity or amplitude convo-
B ot 1 Wtion 12 shoun tat s gh felds, e comtine it
emissions in systems near marginal stability, with wide-tlon 'S close o the do_mlnant |nQ|V|duaI d|str!bgt|on b.Ut d?'
spread applicability to space and astrophysical bhenomena \ﬂalops a significant tail at low fields. The origin of this tail

; X ‘ahd the development of approximate power-law regions at
gh’igh fields are described and explained. These effects are
illustrated in Sec. IV using data for the Vela pulsar
[26,28,29. The use of the two-component analysis leads to
significantly improved fitting of the data and changes in their
physical interpretation. The implications of the Vela results
for understanding pulsar emissions are discussed in Sec. V,
together with suggestions for other applications. The paper’s
conclusions are summarized in Sec. VI.

muir waves in interplanetary type-Ill solar radio sourf&k
Langmuir waves in the main volume of Earth’s foreshock
[9,10,23, thermal and driven thermal Langmuir waves in the
solar wind and edge of Earth’s foreshock, respectiy&Bhy,
mirror mode and electromagnetic ion cyclotron waves in
Earth’'s magnetosheafl24], waves near the electron plasma
frequencyf , over Earth’s polar caf®5], and radio emissions

from the Vela pulsaf26]. In contrast, EBT apparently ap- Although the foregoing Introduction is focused primarily

Cecular growth model i incansistent with the ield staisice?™ 2V 8rowth in pasmaspecially space an astrophysi-
gro N cal plasmag the problem addressed and theoretical results
measured in all these applications.

Often observed signals consist of the superposition of obtained should be of more general interest. As well as being

signal of interest and a noise background or the superpositi Televant to laboratory plasma physics, space physics, and as-

0 . : :
of two or more signals of interest, the latter corresponding tq{i%%gfelzsast?ﬁgd?gply equally to wave growth in other inho-

either multiple emission mechanisms in a single source or
multiple subsources along the same line of sight. How are
the field statistics affected by these superpositions? Here, this
question is investigated analytically and numerically for The observed field is formed by vector addition of two
transverse(two-dimensiondl electromagnetic signals, with fieldsE, andE, that are transverse to the measurement plane
specific attention to observations of the Vela pulsar(Fig. 1), described by their magnitudés, and E,, and the

[26,28,29. Related applications exist for the superposition ofangle § between them. The probability distributid®(E?),
Langmuir waves and electromagnetic radiation rfgan the  \yritten as a functon of E2 and normalized by

solar wind and Earth’s foresho¢i5] and the superposition JZd(E2)P(E?) =1, is defined by
of electrostatic waves nedy, with whistler-mode hiss over
Earth’s polar cag25]. ) 5 ) 5 )
It is shown in Sec. Il that the combined probability distri- P(E ):ZWAJ dElf dEZf doP1(ED)P2(EZ)P4(6)
bution, formed by vector combination of two fielés and
E, described by separate probability distributions, is given X 8(E?~Ef—E5—2EE, cosf). ey

II. ANALYTICS
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Here, Pi(Eiz) for i=1,2 denotes the probability distribution
of the ith signal as a function oIEiZ, normalized by
JAE?Py(E?)=1, P,(#) is the probability distribution fo,
and A is a normalization constant. Th& function enforces
the vector addition.

If the two signals are produced independently in either the

same source region or different regions then the argle
should be uniformly distributed and () =(2) 1. This
assumption is made henceforth. Performing théntegral
using theé function involves the standard identity

f(xi)

Glax)y’ @

f dx 00 (G001= 2 15674y,

where x; are the roots ofG(x)=0. For the 6 integral,
G(6)=E?—E3—E3— 2E,E, cosé, with a root at

cosf=(E>*—E2—E3)/2E;E, (3)

and

01~ 2E 1E,|sin 6| = J|4ETES— (E?2— E{— E5)?.

Rearranging the square root factor in Ed), Egs.(1)—(4)
lead to

P(E2)=Af dE?
><de§

The square root factor in E@5) contains integrable singu-
larities. These correspond to ofs =1, that is, to the vectors
E; and E, being parallel or antiparallel. The requirement
—1=<cosf =<1 also constrains the integration domainBp
—E, phase space, as discussed next.

P.(E2)P,(E)
(E;+E»)2[E2—(E;—Ex)?]|
(5)

JIE?-

Figure 2 illustrates the singularities and allowed domain

of E;—E, phase space for the integration in E§). First,
the factor E2—(E;+E,)? in Eq. (5) implies singularities
along the linesE= = (E;+E,), of which only the positive
solution is physical, corresponding to ads+1. Second, the
factor E>°—(E;—E,)?=(E—E;+E,)(E+E;—E,) implies
singularities along the line§€,=E,;—E and E,=E;+E,
both of which are physical and correspond to @es-1.
RestrictingE, E,, andE, to be positive definite, the physical
portions of these three singularity lines are shown in Fig
(solid lines. In comparison, for co8=0, Eq. (3) yields the
equation of a circle centered at the origin with radids
(dashed line in Fig. 2 E?>=EZ+E35. Considering the re-
quirementcosd <1 and the above singularities, the allowed
domain of integration in Eq5) thus lies interior to the three
physical singularity lines as shown in Fig. 2.
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DISALLOWED

O
1

FIG. 2. E;—E, space, the singularities and the allowed domain.
How does the predictiofb) differ from those calculated
by assuming simple convolution of the wave intensities or
wave amplitudes? Noting that the intensityE?, intensity

convolution corresponds to

P.<E2>=AJ dEif dE; Py(E])Po(E) S(E*~Ei~E))

(6)
—Af dE; P

In comparison, convolution of the wave amplitudes, corre-
sponding to nonvectorial addition of the field magnitudes,
leads to

(ED)Po(E*—ED). )

PE<E2)=AJ dE%J dE3 P1(E2)P,(E3)S(E—E;—Ey)
®

=Af AE2 2|E—Ey|Py(ED)PH([E—E,T2).
©

The absence of singularities in Eq§) and (9) compared
with Eq. (5), and the different multiplicative factors and
functional dependences of the tthg(E%) make it clear that
intensity convolution and simple field addition, generally,
yield different results from the expressi¢h) for full vecto-

_aial convolution. It is, therefore, important to calculate the

statistics of combined signals by using the predic{idn

Explicit expressions for the distributior3; and P, are
required before proceeding to numerical results. A Gaussian
distribution Pg(E?) in E2 or | is described by

Po(E2)=(\2moB)" 1 e (EP-EQ%20] (10)
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log P(log E)
b » b o

log E

FIG. 3. Probability distributiorP(E?) (thick solid ling for the FIG. 4. The distributiorP(log E)=P(log;, E) for the same pa-
vectorial convolution5) of the two Gaussian distributions in Table rameters and using the same line styles as Fig. 3.
I. Here and below loglog,y. Thick dashed and dotted lines show

the predictiong6) and(7), respectively, for intensity and amplitude : :
convolution. Thin dashed and dotted lines show the two individualbUt not £q.(6) or Eq. (8) is due to the fully vectorial nature

distributions of the convolution, as interpreted in detail below, and not due
' to Gaussian distributions having a similar tail. Third, the pre-
fdiction (5) differs significantly from the two input distribu-
tions. However, the predictiof) is closely Gaussian at high
Sue! SOV E above the peak iR(E?), differing mostly below the peak.
distribution Similar comments apply to the combined distribution
P(log E) shown in Fig. 4; note that thE? conversion factor
in Eq. (12) betweenP(E?) and P(logE) changes the rela-
tively flat tail at low E for P(E?) (becausePg(E?)
normalized using [d(logE)P \(logE)=1, where logE ~(\2mo,B) LeE02 for E?<EJ) into an approximate
=log,, E, to the form for an integral oveE2. The resultis  power-law form withP(log E) «E2.

Figure 5 shows typical results for the combination of a

whereE3 and o, are the average and standard deviation o
E?, 28=1+erf(E§/20,), and erf represents the usual error
function. The expression for a lognormal

P_n(E?) is obtained by converting the definition

P n(l0gE) = (\2mo) le (0gE-m?20* (19

PLn(E?) =Pyn(logE)/(2E? In 10). (12 lognormal and a Gaussian distribution, whose parameters are
specified in Table I. Once again the vectorial predictibn
Ill. NUMERICAL ANALYSES differs qualitatively from those for intensity and amplitude

convolutions, primarily through the development of a rela-
tively flat tail at low E. The prediction(5) also differs sig-
Representative results for the distributiBE?) that re-  nificantly from the component distributions Btsmaller than
sults from combining two Gaussian distributions are dis-the peak inP(E?). Note, however, that the fall off at lardge
played in Fig. 3; the Gaussian parameters are listed in Tablebove the peak iP(E?) is closely lognormal; this corre-
I. Shown are the initial distributions themselves and predicsponds to the lognormal profile of the component distribu-
tions (5)—(9) for the full vectorial, intensity, and amplitude tion that dominates at high.
convolutions, respectively, of the initial distributions. Several Figure 6 shows typical results for two lognormal distribu-
important results are apparent. First, the full vectorial predictions, whose parameters are in Table I. Results in common
tion (5) is significantly different from the intensity and am- with those above are: the strong qualitative differences be-
plitude convolution$6)—(9): while the distribution’s shape is tween the predictionf5) and intensity and amplitude convo-
qualitatively similar at highk for the three predictiongbut  lutions, the development of the enhanced, relatively flat tail
differs in magnitudg at low E, the appearance of an almost at low E for the prediction(5), significant differences be-
flat tail in the full distribution(5) points to an important tween the component distributions and Ef) below the
qualitative difference. Second, the tail at Id@for Eq. (5)  peak inP(E?), and the fall off above the peak P(E?) has

A. General features and trends

TABLE I. Gaussian and lognormal parameters for Figs. 3—8. Hgre{E?) or (log,, E;) for a Gaussian
or lognormal component, respectively, with the corresponding standard deviation.

Figure Component 1 Component 2 A, Ty A, oy
3,4 Gaussian Gaussian 2000 1000 10000 3000
5 Gaussian lognormal 2000 1000 2.1 0.1
6,7 lognormal lognormal 1.2 0.2 2.1 0.1
8 lognormal lognormal 1.2-24 0.2 2.1 0.1
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log P(log E)
- S G

(o)}
o
N
W

log E

FIG. 5. In the same format as in Fig. 3, the combined distribu- FIG. 7. The combined distributioR(log E) corresponding to
tion P(E?) for the Gaussian and lognormal components describegtig. 6, presented in format of Fig. 4.
in Table I.

lognormals: varying only the parameter; of one-wave

the samelognormaj character as the component distribution POPulation to change the overlap of the two distributions, the
dominant at higrE and the predictiongs) and (7). Figure 7  tail height increases strongly as the overi@md x,) in-
displaysP(log E) for completeness. creases before peaking and then decreasmg again as-
An explanation is needed for the enhanced tail at Bw C€edsu.. Figure 8 also shows that the combined distribution
for prediction(5) in Figs. 3—7. This tail is primarily due to (5) can have an approximate power-law form at higte.g.,
the vectorial nature of the convolution for two reasons. Firstthe dotted and dash-dot curyess discussed more in Sec.
allowing nonaligned vectors in the vectorial convolution is 1 B. _
the primary difference betwee(®) and predictiong6) and _These and gnalogo_us figures demonstrate tha_t the fu_II vec-
(8). Second, varying the nature and parameters of the conforial convolution(s) differs markedly from the simpler in-
ponent wave distributions does not affect the tail's existencdensity and amplitude convolution resul® and(8), princi-
and qualitative behavior but only its height. Consider thePally through the enhanced tail at lo& Another general
case wherE; andE, are antiparallel and have very similar reSult is that at large, near and above the peak in the
magnitudes, so th&=E, +E,~0. This case is included in combined P(E?) distribution, predictions(5)—(9) differ
Eq. (5) but not in Egs.(6) and (7), and clearly leads to a q_uantltatlv_ely bu; fall off_very S|m|larly_ to _the_dom!nant in-
significant contribution tP(E2) at low E. Specifically, Eq. dividual dlstr|but|o_n, defined as _the d|str|_but|on e_nther cen-
(5) has an integrable singularity f@&— (E,;—E,)~0 corre- f[ered at or extend_lng f_urther to high&r While ar_npllt_ude or
sponding to co®=—1. Thus, physically, the tail at sma# intensity convolution is a reasonablezapprommatlo_n to the
for the prediction(5) corresponds to contributions with, result(5) near and above the peakR{E"), it clearly fails at
~—E,. This implies that the tail will have a larger magni- low E_. Accordingly, the full vectorial result5) should be
tude when the two individual distributions have significantUS€d in general.
overlap and will decrease as the overlap decreases and one —4
individual distribution dominates the othefe.g., |E,|
>|E,|). Figure 8 confirms this prediction for the case of two

(\/1\ —6 = =
Ll 4
S
. o —8 —
~ - o .
N .
L N ©°—10 -
Nt
a i 4
2 -
- ] 2
. log E
-12
6 FIG. 8. Evolution of the combined distributioR(E)? (thick
2 lines) given by Eq.(5) as a function of the overlap between two
|Og E contributing lognormals. Holding the second lognormal constant

(m2=2.1 ando,=0.1—thin dotted ling the centroidu of the first
FIG. 6. The combined distributioR(E?) for the two lognor-  lognormal is 1.2(solid), 1.6 (dashed} 2.0 (dotted, and 2.4(dash-
mals described in Table I, displayed in format of Fig. 3. dot) for constanto;=0.1. Here log=log,,.
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log E

log E

o FIG. 10. Vela datdtriangle symbolsand theoretical fits to Eq.
FIG. 9. The observed distributidh(log E) for Vela at phase 450 (5) for the distribution P(logE) at phase 510, with loglogyo.

(triangle symbolsis compared with the best fithick solid lin® 10 hjck solid and dashed lines show best fits for the double-
the prediction(5) for the combination of a Gaussian and a lognor- lognormal and Gaussian-lognormal combinations, respectively,

mal componentthin dashed and dotted lines, respectiyelyere e thin dashed and dotted lines show the individual distributions
log=log;,. The fitting procedure and fit parameters are described iBor the best-fit double-lognormal combination.

the text.

tions, at least one of which is lognormal with a large enough

o . o o to dominate the other at large enough It may not be
Domains in which the distribution®(E?) and P(IogE)  possible to reliably distinguish between these possibilities

appear to vary with a power-law form are important bothynless the domain in ldg (and the number of counts in the

theoretically and observationally, particularly in connectionentire distribution is large enough, ideally at least a decade
with the SOC and interpretations of observational data. It hag, |ogE.

already been shown that an approximafeform is typical
for tth(Iog E) distribution at Io_wE dug to the slowly vary- IV. APPLICATION TO THE VELA PULSAR
ing tail at low E for the P(E?) distribution(5). The purpose
of this section is to show that combining a lognormal distri- Radio emissions from pulsars are well known to vary
bution with either a lognormal or Gaussian distribution cangreatly in intensity, sometimes by more than an order of
also lead to the combined distributidB) having a closely magnitude, both from pulse to pulse at a given phase and
power-law form in a restricted domain at high Since the also between neighboring phasésne samples within a
asymptotic form at high enough is still imposed by the pulse despite each pulsar having a very well-defined pulse
individual distribution which extends to high& (see Figs. profile when averaged over thousands of puls¥d. Re-
3-8, these power-law regions occur at intermediatemear cently, a dataset of about 20000 contiguous, rapidly
where the curve®(E?) cross for the individual distributions sampled, and coherently dedispersed pulses was obtained for
and a transition exists between which individual distributionthe Vela pulsar{28,29. The intensity was sampled 2048
dominates at highe. times per pulse, or about every 44, corresponding to
These power-law domains at hightypically develop as 2048 “phase” bins for the pulsar’s rotation. First analyses of
follows: a lognormal distribution is centered at I&@but has  these data at a number of pulse phd§ provide strong
large enougho such that it extends to largde than the evidence that the field statistics are lognormal, supporting the
second, more intense, but narrower wave distribution, whictinterpretation that pure SGT is relevant and strongly con-
may be either Gaussian or lognormal. Then, at high enoughtraining the emission mechanism and physics of the source.
E, the combined distributiob) changes its functional form However, at other pulse phases the observed field statistics
from the one determined by the second distribution towardither are not well fitted by a single lognormal component or
that for the underlying higle- lognormal, often leading to a appear approximately power-law at high fields above a
domain, in which the combined distribution appears powetGaussian noise background. Here, the formalism and results
law. Note, moreover, that the lognormal distribution showsof Secs. Il and Il are applied to the Vela dataset, resulting in
an approximately linear slope in log-log plots for IBgu,  greatly improved fitting and understanding of the observed
thereby appearing as a local power law. This is illustrated irfield statistics and showing that the highpower law is best
Fig. 8 for the combination of two lognormalg.g., see the interpreted in terms of vector convolution of a Gaussian
dotted and dash-dot curyeand in Fig. 9 below for the background component with an emerging lognormal compo-
lognormal-Gaussian combination. nent(cf. Sec. Il B). In addition, results at other phases are
Thus, as discussed in more detail below, the appearance bést interpreted in terms of the combination of two underly-
approximately power-law statistics does not necessarilyng lognormal distributions. A detailed analysis of these data
mean that an interpretation in terms of an intrinsic power-lawwith vectorially combined two-component fits for a wide
distribution(and SOQ is in order. Instead, the statistics may range of pulsar phases is underw&,32.
be due to the combination of two underlying wave distribu- Figure 9 shows theP(logE) distribution observed for

B. Development of domains with apparent power-law character
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phase 45Qtriangle symbolg a phase at which the pulsar is at high E and is the dominant contributor to the pulsar’s
above background but before the peak in the average profilemission, superposed with either a Gaussian or a second log-
This distribution is obtained by binning the time series of hormal component at lo. Lognormal statistics are consis-
data for this phase in ldg and normalizing. Heret- is de- et with SGT and inconsistent with, first, the power-law
fined by E*=1 in terms of the intensity (actually the flux  gaiistics expected for SOC or nonlinear self-focusing insta-

density, which equals the intensity divided by the detector’sOiIities or driven thermal wavei$,6,21,13,15and, second
20 MHz bandwidth, measured in millijanskygmJy) with the flat P(logE) distribution expected for uniform secular

1 mly=10 2 Wm ?Hz % In Fig. 9, note the approxi- , e _ ;
mateK/:power—law variations, bothgabove and belowptrr)]e peaI@rOWth [8]. This means that Vela’s field statistics are consis-

The thick solid line shows the result of fitting) for the  (ent with the source plasma being in an SGT sfae: the
combination of one Gaussian and one lognormal distributionPU!Sar’s emission corresponds to a plasma instability operat-
obtained by minimizingy? using the amoeba routir@3]. ing stocha_stlcally near marginal s_tabl!lty, with self-cqn5|_stent
The bestfit parameters aré,=E2=2900 mJy anda, wave-particle interactions occurring in a plasma Wlth mdeT
— 1300 mJy for the Gaussian, cf. E(Eq.O), andu=1.13 and pendently prescribed inhomogeneities. The source is not in

o=0.40 for the lognormal, cf. Eq11). This fit agrees well an SOC state.

with the data and has good statistical significangg: The radio emission mechanism is also strongly con-
o . : s S ' strained by the observed statistics. The absence of intrinsic
=33.9 with 26 bins, yielding a significance probabiliB/

—0.14. The fitted component distributions are shown Withpower-law statistics at high for these phases is inconsistent

dashed and dotted lines. In comparison, single—componewlth nonlinear self-focusing instabilities being important,

IEontrary to several previous suggesti¢8d—34. Similarly
Gaussian or lognormal fits clearly fail and have poor statis; : LS e
tical significance {2=10° and P<1029. Double- the absence of a cutoff in the lognormal distributions at high

: A E is inconsistent with a nonlinear r ing im-
lognormal fits are similarly poor for these data. s inconsistent with a nonlinear decay process being

Analyses at other phasésot shown heré31,37) clearly portant. Thus, these data are consistent with the Vela pulsar’s

demonstrate that the lognormal component evolves si niffmission mechanism being linegit], either generating ra-
9 P 9 iation directly by a linear instability in an SGT state or

ntl function of ph while th ian component . Y . .
cantly as a function of phase € the Gaussian compo e directly via linear mode conversion of nonescaping waves

corresponds primarily to the Gaussian f|_eld statistics obe riven by a linear instability in an SGT state. These analyses
served off pulse, where measurement noise and sky back-

ground dominate. This figure is thus important for two rea- nd associated theoretical interpretations provide strong evi-

. . nce that pulsar radiation is often generated by linear pro-
sons. First, it demonstrates that these pulsar data are wcg P g y P

fitted by the combination of a Gaussiénoise component Cesses, complementing recent purely theoretical arguments
. . : : [37,38.
and an emerging lognormal componéwhich dominates in-

X ; : i The origin of the second lognormal component has not
creasingly in the phase range 460—b48econd, it provides been addressed before. The simplest possibility is that it is a

ey Brosso, BTt .6 o 200N veaker, emission produced n an SGT sysem o
P P y cated in either the same or, more probably, a different source

convolutlon of two underlying component distributions, nei- region. Evolution of the second component from Gaussian
ther of which have power-law statistics. Care must, there:

fore, be taken in interpreting apparently power-law statistics'mensr[y statistics to lognormal statisticand then back

Figure 10 addresses Vela data for phase 510, which aafcross the source is then interesting. If the Gaussian compo-

. Ment were solely instrumental noise then it should be present
bear sltrongly Iogn?rrg'alt. '-tch? bZit. fl& to Il-;(g)l'fOétvr\? log- and unchanging at all phases. Since scattering can lead to
rlozrn;a cgrrg)pfgen _'ig u |o(;1 'E 0 iclj IC 'E 1a15 '“ﬁ Gaussian intensity statisti¢$], these changes in the Gauss-

— e 1=l i '“?ta the dar: 025 - n dq.t( 0 )t'. | siclan component at some phases may be interpretable, some-
2%{5:;(:;?;32/_\/"261 iN:‘or 1: bir?sa ;ligl din?;—ggol 451?h|: f(?r S%hat speculatively, in terms of scattering and propagation

A P Pl " effects acting on an intrinsically lognormal component, with
responding Gaussian-lognormal fit hgé=1551 and mini- g y ‘09 b

o= e . . ; the lognormal component escaping with minimal scattering
mal StatIStIC§1| 5|gn|f|panc(a:h|ck dashed' ling Thin daSheF‘ .at other phases. Further work is required to test this interpre-
and dotted lines delineate the underlying component distri

butions for the double-lognormal combination, with one be tation.
) . : ' " Before proceeding to discuss other applications of the for-
ing located at small lo§=<1.8. The fits for the double- b g bp

I | and G an-| | diff imarily in th malism, it is cautioned that pulsar emission mechanisms may
orc?norzna lan _ aussu’;_\r;]- ohgnorma di elr prlmarlly in tb_e potentially vary from phase to phase and from pulsar to pul-
tail at low logE=<1.8, with the Gaussian-lognormal combi- o, " This"js evidenced by observations of power-law field
nation significantly overpredicting the tail's level. Accord-

) . L TP statistics for so-called giant pulses from the Crab pulsar and
ingly, the combined distributiofb) can be used to discrimi- oo millisecond pulsaf89—41, as well as for so-called

nate between the form of the underlying distributions everyi, o\ micropulses from phases 430 to 434, only, for the Vela
v_vhen one distribution is primarily localized at much lower pulsar[28,29. The indices observed for the{E) distri-
fields than the other. butions, ranging from=—4 to — 7, are not inconsistent with
V. DISCUSSION OF THE VELA DATA those expectedi12,13 for the nonlingar_ self-focusing pro-
cess of wave collaps82]. These variations emphasize the
The foregoing analyses show that Vela’s variability is well importance of field statistics for understanding remote space
modeled in terms of a lognormal component that dominateand astrophysical sources.
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The formalism developed in this paper should be imme-power-law tail can develop in a restricted domainEpfear
diately applicable to other pulsars, as well as to other radiavhere a lognormal centered at Id&y but with large variance
emissions from solar system and other astrophysical sources?, eventually dominates a second, narrower distribution
Possible candidates include Jovia®"‘bursts[22], solar ra- centered at higheE than the first. Similarly, at higlg, a
dio bursts, and astrophysical masers. The formalism, perhapsgnormal distribution may appear power law over a limited
adapted to consider signal detection with a one-dimensionahnge ofE. Care must, thus, be taken in interpreting approxi-
rotating spacecraft antenna, also is relevant to superpositiamate power-law distributions in terms of SOC, SGT, and/or
of plasma waves. Known examples of such superpositiongectorial combinations of signals without intrinsic power-law
are currently treated by restricting analysis to highwell distributions.
above the backgroun@vhere the form of the combined dis-  These predictions are illustrated using recent data from
tribution agrees closely with the dominant component pethe Vela pulsar, with major implications for pulsar physics.
Sec. lII's analysesor else assuming & function inE for the  They are found to fit well, both quantitatively and with high
second component. They includél) the near-Earth solar statistical significance, with Gaussian-lognormal and double-
wind and edge of Earth’s foreshock, where radio waves justognormal combinations applying in different phase domains
above f, occur with thermal Langmuir waves and driven that cover most of Vela's pulse profile. The Gaussian-
thermal Langmuir waves, respectivdlys], (2) waves near lognormal fits are appropriate at phases where the observed
f, occur with whistler-mode hiss belofy over Earth’s polar  distributionsP(log E) and P(E?) have nearly power-law do-
cap [25], and (3) bursty Langmuir waves occur with mains at largeée: these power laws are thus not intrinsic but
whistler-mode hiss at auroral latitudes in and above Earth’sorrespond to vector convolution of two non-power-law dis-
ionospherd42]. tributions. These data are best interpreted in terms of the

pulsar’s emissions having lognormal statistics at these

VI. CONCLUSIONS phases. This is strong evidence that the emissions are gener-

ated in an SGT system, corresponding to a plasma instability
. Statistics of wa_ve.fields can be.used to constrain the physoperating near marginal stability in an inhomogeneous
ics of the emission mechanism and source regiomjasma. Moreover, the absence of intrinsic power-law statis-
[6-12,14,15,17-20,23-27,31]32Superposition of waves tics or cutoffs in these distributions is consistent with the
generated by several mechanisms or in several sources Cggiiation being generated by a purely linear instability, either
make it difficult to interpret the statistics. Accordingly, an gjrectly or else indirectly via linear mode conversion of non-
analytic expression for the field statistics resulting from VeC-gscaping waves produced by an instability, and inconsistent
tor superposition of two-component field distributions hasyjth SOC or nonlinear self-focusing mechanisms proposed
been derived and the resulting two-dimensional integrahreviously. The utility and power of field statistical tech-
solved numerically. This probability distribution for two vec- niques, as well as the richness of pulsar physics, is empha-
torially combined fields differs, in general, from both the sjzed by pointing out that giant pulses from other pulsars and
component distributions and the distributions resulting fromgiant micropulses from Veldin a distinct, very localized,
amplitude or intensity Convolution. It typ|Ca.”y fO“OWS the range of phases from those ana'yzed hme power-'aw
qualitative form of the dominant individual component at statistics with indices not inconsistent with nonlinear self-
high E, but not at fields below the peak, where a significantfocysing instabilities. Finally, the theoretical predictions pre-
tail develops. This lovE tail has no counterpart in the pre- sented and illustrated here are expected to be widely appli-
dictions for amplitude or intensity convolution, instead re-caple to plasma waves and radiation propagating from space
sulting from vector convolution of approximately antiparallel and astrophysical sources or observed in laboratory and
vectors of similar magnitude from the two-component distri-space plasmas. More generally, this research is relevant to
butions. It is most prominent when the two individual distri- the analysis and interpretation of field statistics for waves
butions overlap substantially. growing in inhomogeneous media, such as optical fibres and

_Approximately power-law distributions can develop at gther materials with randomly embedded lasers, and perhaps
high E from vector convolution of a lognormal with either a gcean acoustics.

lognormal or Gaussian, with neither individual distribution

being power law. At lowE below the peak, a power law

Qevelops in the comb.mela(log E) dl.str|'but|'on when the tail ACKNOWLEDGMENTS

is approximately flat in thé®(E?) distribution, correspond-
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