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Field statistics of two vectorially superposed wave populations
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Field statistics of observed waves and radiation constrain the physics of the emission process and source
region. However, data often contain two or more superposed signals or a signal superposed on a noise
background, creating difficulties for interpretation. Here, the combined probability distribution of the field
formed by vector superposition of two signals, each with specified statistics, is written as a double integral with
integrable singularities. The analytic result and its numerical solutions for combinations of Gaussian and
lognormally distributed signals show that these predictions differ from those for field or intensity convolution
and from the individual wave distributions. At high fields, the combined distribution takes the qualitative form
of the dominant individual distribution~which is localized or otherwise extends to larger fields! but develops
a significant tail at low fields due to vector superposition of almost antiparallel fields with similar magnitudes.
It is shown that very nearly power-law distributions can develop in significant field domains, despite neither
component distribution being power law. This is relevant to alternative interpretations in terms of self-
organized criticality and certain modulational wave instabilities. The formalism is then applied to observations
of the Vela pulsar, resulting in greatly improved fits to data and different interpretations. Specifically, the results
are strong evidence that stochastic growth theory~SGT! is relevant and that the approximate power-law
statistics found at some phases are not intrinsic but rather due to vector convolution of a Gaussian background
with a lognormal; the latter is interpretable in terms of SGT. The field statistics are consistent with the emission
mechanism being a direct linear instability or indirect generation via linear mode conversion of nonescaping
waves driven by a linear instability. They are inconsistent with nonlinear self-focusing instabilities generating
the observed pulsar radiation. This formalism and its results should also be widely applicable to other types of
wave growth in inhomogeneous media.

DOI: 10.1103/PhysRevE.66.066614 PACS number~s!: 46.65.1g, 02.50.2r, 95.30.2k, 95.75.2z
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I. INTRODUCTION

The field statistics of plasma waves and radiation
emerging research areas of space physics, astrophysics
plasma physics. In contrast, Fourier, correlation, and o
studies of an emission’s temporal and frequency proper
are both conventional and long studied. Correlation analy
for instance, are standard because they reveal dispersive
scintillation effects due to scattering in and propagat
through inhomogeneous plasmas@1#. Emphasis on field sta
tistics is relatively new, however, and has followed from t
study of wave growth in inhomogeneous plasmas.

Characterizing the bursting of observed signals in ter
of field statistics is worthy in its own right as an analys
tool, but its importance for developing physics-based th
ries for natural phenomena is considerably stronger. Part
larly for remote observations, such as space and astroph
cal sources wherein situ observations are not possibl
analyses of field statistics potentially open a new wind
into the source physics. As summarized in detail below,
reason is that the field statistics depend on the emis
mechanism~s! for the waves, the physics of the wav
particle-background plasma system in the source~and so on
the source plasma parameters!, scattering/propagation effect
between the source and observer, and whether one or m
processes in a single source, or in multiple sources, con
ute to the observed variability. Put in another way, theo
data comparisons allow the active emission mechanism~s!
and source physics to be constrained by, and ideally infe
from, the observed field statistics. This paper presents th
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related to disentangling the number of active proces
and/or sources contributing to observed field statistics, ap
cation of this theory to the Vela pulsar, and discussion of
resulting implications for the emission mechanism a
source physics responsible for pulsar radio emissions.

A number of theoretical predictions now exist for the fie
statistics of waves or radiation, each dependent on the e
sion mechanism, source physics, and/or scatter
propagation effects. First, the usual model for wave grow
in plasmas@2–4#, involving spatially uniform secular ampli
fication at a constant rate until limited by nonlinear effec
predicts that the probability distribution of wave electr
fields E, P(E), should be uniformly distributed in logE
([ log10 E here! below the nonlinear threshold. Second, r
diation from a large number of incoherently superpos
sources, or scattering by density irregularities@1#, should
produce Gaussian intensity distributions, where the inten
I}E2. Third, self-organized criticality~SOC! @5,6#, which
describes the self-consistent evolution of a waves-partic
plasma background system near marginal stability, sho
produce a power-law distribution for energy releases w
index close to21 ~but ranging from '20.5 to 22).
Fourth, pure stochastic growth theory~SGT!, which de-
scribes the evolution of a self-consistent wave-particle s
tem driven stochastically near marginal stability in a p
scribed inhomogeneous plasma background, pred
lognormal statistics@7–11#. ~Note that most natural plasma
are expected to evolve to states close to marginal stab
where emission and absorption are closely balanced, du
©2002 The American Physical Society14-1
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CAIRNS, ROBINSON, AND DAS PHYSICAL REVIEW E66, 066614 ~2002!
operation of plasma instabilities and the large distances
times available for relaxation.! Fifth, the combination of
SGT with nonlinear processes alters the field statistics pri
rily near and above the lowest threshold fieldEc for the
nonlinear processes; if a nonlinear three-wave process
moves energy from the waves then the lognormal distri
tion exhibits a nonlinear cutoff nearEc with known analytic
form, while nonlinear self-focusing processes such as mo
lational instability and wave collapse cause a power-law
to develop aboveEc with P(E)}E2a anda ranging from 3
to 7 @11–13#, depending on the dimensionality, shape~iso-
tropic versus oblate versus prolate!, and subsonic/superson
character of the collapsing wave packets. Sixth, waves dr
stochastically from thermal levels by an instability, but su
ficiently weak to retain memory of their thermal past, c
also develop a power-law tail@14,15#. Finally, the elemen-
tary burst theory~EBT! @16,17# involves systems in which
waves and particles interact self-consistently in growth s
but do not evolve to a SGT state. The EBT systems h
exponential statistics.

SOC applies widely to bursty phenomena active ove
wide range of spatial, temporal, or energy scales@5#, with
applications including earthquakes@18#, condensed matte
physics@19#, solar flares@20#, auroral physics, and perhap
pulsars@21#. The Jovian ‘‘S’’ bursts also show a power-law
flux distribution @22#, for which SOC or driven therma
waves@14,15# may be relevant. SGT is also attractive due
its ability to explain the bursting and variability of natur
emissions in systems near marginal stability, with wid
spread applicability to space and astrophysical phenomen
applies to all eight phenomena analyzed by us to date: La
muir waves in interplanetary type-III solar radio sources@8#,
Langmuir waves in the main volume of Earth’s foresho
@9,10,23#, thermal and driven thermal Langmuir waves in t
solar wind and edge of Earth’s foreshock, respectively@15#,
mirror mode and electromagnetic ion cyclotron waves
Earth’s magnetosheath@24#, waves near the electron plasm
frequencyf p over Earth’s polar cap@25#, and radio emissions
from the Vela pulsar@26#. In contrast, EBT apparently ap
plies to solar decimetric spike bursts@17,27# but the uniform
secular growth model is inconsistent with the field statist
measured in all these applications.

Often observed signals consist of the superposition o
signal of interest and a noise background or the superpos
of two or more signals of interest, the latter corresponding
either multiple emission mechanisms in a single source
multiple subsources along the same line of sight. How
the field statistics affected by these superpositions? Here,
question is investigated analytically and numerically
transverse~two-dimensional! electromagnetic signals, with
specific attention to observations of the Vela puls
@26,28,29#. Related applications exist for the superposition
Langmuir waves and electromagnetic radiation nearf p in the
solar wind and Earth’s foreshock@15# and the superposition
of electrostatic waves nearf p with whistler-mode hiss ove
Earth’s polar cap@25#.

It is shown in Sec. II that the combined probability dist
bution, formed by vector combination of two fieldsE1 and
E2 described by separate probability distributions, is giv
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by an integral with integrable singularities. This integr
shows that the combined field statistics are generally dif
ent from the statistics obtained by direct convolution of
ther the intensity distributions or the field distributions b
cause a vector field convolution is required. In Sec. III, t
combined field statistics are investigated numerically
both Gaussian and lognormal distributions, showing t
they are, in general, different from those of the individu
distributions or the results for intensity or amplitude conv
lution. It is shown that at high fields, the combined distrib
tion is close to the dominant individual distribution but d
velops a significant tail at low fields. The origin of this ta
and the development of approximate power-law regions
high fields are described and explained. These effects
illustrated in Sec. IV using data for the Vela puls
@26,28,29#. The use of the two-component analysis leads
significantly improved fitting of the data and changes in th
physical interpretation. The implications of the Vela resu
for understanding pulsar emissions are discussed in Se
together with suggestions for other applications. The pap
conclusions are summarized in Sec. VI.

Although the foregoing Introduction is focused primari
on wave growth in plasmas~especially space and astrophys
cal plasmas!, the problem addressed and theoretical res
obtained should be of more general interest. As well as be
relevant to laboratory plasma physics, space physics, and
trophysics, they apply equally to wave growth in other inh
mogeneous media.

II. ANALYTICS

The observed fieldE is formed by vector addition of two
fieldsE1 andE2 that are transverse to the measurement pl
~Fig. 1!, described by their magnitudesE1 and E2, and the
angleu between them. The probability distributionP(E2),
written as a function of E2 and normalized by
*0

`d(E2)P(E2)51, is defined by

P~E2!52pAE dE1
2E dE2

2E du P1~E1
2!P2~E2

2!Pu~u!

3d~E22E1
22E2

222E1E2 cosu!. ~1!

FIG. 1. FieldsE1 and E2 have magnitudesE1 and E2 and an
angleu between them.
4-2
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FIELD STATISTICS OF TWO VECTORIALLY . . . PHYSICAL REVIEW E66, 066614 ~2002!
Here,Pi(Ei
2) for i 51,2 denotes the probability distributio

of the i th signal as a function ofEi
2 , normalized by

*dEi
2 Pi(Ei

2)51, Pu(u) is the probability distribution foru,
and A is a normalization constant. Thed function enforces
the vector addition.

If the two signals are produced independently in either
same source region or different regions then the anglu
should be uniformly distributed and soP(u)5(2p)21. This
assumption is made henceforth. Performing theu integral
using thed function involves the standard identity

E dx f~x!d@G~x!#5(
xi

f ~xi !

udG/dxuxi

, ~2!

where xi are the roots ofG(x)50. For the u integral,
G(u)5E22E1

22E2
222E1E2 cosu, with a root at

cosu5~E22E1
22E2

2!/2E1E2 ~3!

and

UdG

du U52E1E2usinuu5Au4E1
2E2

22~E22E1
22E2

2!2u. ~4!

Rearranging the square root factor in Eq.~4!, Eqs. ~1!–~4!
lead to

P~E2!5AE dE1
2

3E dE2
2

P1~E1
2!P2~E2

2!

Au@E22~E11E2!2#@E22~E12E2!2#u
.

~5!

The square root factor in Eq.~5! contains integrable singu
larities. These correspond to cosu561; that is, to the vectors
E1 and E2 being parallel or antiparallel. The requireme
21<cosu <1 also constrains the integration domain inE1
2E2 phase space, as discussed next.

Figure 2 illustrates the singularities and allowed dom
of E12E2 phase space for the integration in Eq.~5!. First,
the factor E22(E11E2)2 in Eq. ~5! implies singularities
along the linesE56(E11E2), of which only the positive
solution is physical, corresponding to cosu511. Second, the
factor E22(E12E2)25(E2E11E2)(E1E12E2) implies
singularities along the linesE25E12E and E25E11E,
both of which are physical and correspond to cosu521.
RestrictingE, E1, andE2 to be positive definite, the physica
portions of these three singularity lines are shown in Fig
~solid lines!. In comparison, for cosu50, Eq. ~3! yields the
equation of a circle centered at the origin with radiusE
~dashed line in Fig. 2!: E25E1

21E2
2. Considering the re-

quirementucosuu<1 and the above singularities, the allowe
domain of integration in Eq.~5! thus lies interior to the three
physical singularity lines as shown in Fig. 2.
06661
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How does the prediction~5! differ from those calculated
by assuming simple convolution of the wave intensities
wave amplitudes? Noting that the intensityI}E2, intensity
convolution corresponds to

PI~E2!5AE dE1
2E dE2

2 P1~E1
2!P2~E2

2!d~E22E1
22E2

2!

~6!

5AE dE1
2 P1~E1

2!P2~E22E1
2!. ~7!

In comparison, convolution of the wave amplitudes, cor
sponding to nonvectorial addition of the field magnitude
leads to

PE~E2!5AE dE1
2E dE2

2 P1~E1
2!P2~E2

2!d~E2E12E2!

~8!

5AE dE1
2 2uE2E1uP1~E1

2!P2~@E2E1#2!.

~9!

The absence of singularities in Eqs.~7! and ~9! compared
with Eq. ~5!, and the different multiplicative factors an
functional dependences of the termP2(E2

2) make it clear that
intensity convolution and simple field addition, general
yield different results from the expression~5! for full vecto-
rial convolution. It is, therefore, important to calculate th
statistics of combined signals by using the prediction~5!.

Explicit expressions for the distributionsP1 and P2 are
required before proceeding to numerical results. A Gauss
distributionPG(E2) in E2 or I is described by

PG~E2!5~A2ps IB!21 e2(E22E0
2)2/2s I

2
, ~10!

FIG. 2. E12E2 space, the singularities and the allowed doma
4-3
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CAIRNS, ROBINSON, AND DAS PHYSICAL REVIEW E66, 066614 ~2002!
whereE0
2 and s I are the average and standard deviation

E2, 2B511erf(E0
2/2s I), and erf represents the usual err

function. The expression for a lognormal distributio
PLN(E2) is obtained by converting the definition

PLN~ logE!5~A2ps!21e2(log E2m)2/2s2
, ~11!

normalized using *d(logE)PLN(logE)51, where logE
5log10 E, to the form for an integral overE2. The result is

PLN~E2!5PLN~ logE!/~2E2 ln 10!. ~12!

III. NUMERICAL ANALYSES

A. General features and trends

Representative results for the distributionP(E2) that re-
sults from combining two Gaussian distributions are d
played in Fig. 3; the Gaussian parameters are listed in T
I. Shown are the initial distributions themselves and pred
tions ~5!–~9! for the full vectorial, intensity, and amplitud
convolutions, respectively, of the initial distributions. Seve
important results are apparent. First, the full vectorial pred
tion ~5! is significantly different from the intensity and am
plitude convolutions~6!–~9!: while the distribution’s shape is
qualitatively similar at highE for the three predictions~but
differs in magnitude!, at low E, the appearance of an almo
flat tail in the full distribution ~5! points to an important
qualitative difference. Second, the tail at lowE for Eq. ~5!

FIG. 3. Probability distributionP(E2) ~thick solid line! for the
vectorial convolution~5! of the two Gaussian distributions in Tab
I. Here and below log[log10. Thick dashed and dotted lines sho
the predictions~6! and~7!, respectively, for intensity and amplitud
convolution. Thin dashed and dotted lines show the two individ
distributions.
06661
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but not Eq.~6! or Eq. ~8! is due to the fully vectorial nature
of the convolution, as interpreted in detail below, and not d
to Gaussian distributions having a similar tail. Third, the p
diction ~5! differs significantly from the two input distribu
tions. However, the prediction~5! is closely Gaussian at high
E above the peak inP(E2), differing mostly below the peak
Similar comments apply to the combined distributio
P(logE) shown in Fig. 4; note that theE2 conversion factor
in Eq. ~12! betweenP(E2) and P(logE) changes the rela
tively flat tail at low E for P(E2) ~becausePG(E2)

'(A2ps IB)21e2E0
4/2s I

2
for E2!E0

2) into an approximate
power-law form withP(logE) }E2.

Figure 5 shows typical results for the combination of
lognormal and a Gaussian distribution, whose parameters
specified in Table I. Once again the vectorial prediction~5!
differs qualitatively from those for intensity and amplitud
convolutions, primarily through the development of a re
tively flat tail at low E. The prediction~5! also differs sig-
nificantly from the component distributions atE smaller than
the peak inP(E2). Note, however, that the fall off at largeE
above the peak inP(E2) is closely lognormal; this corre
sponds to the lognormal profile of the component distrib
tion that dominates at highE.

Figure 6 shows typical results for two lognormal distrib
tions, whose parameters are in Table I. Results in comm
with those above are: the strong qualitative differences
tween the prediction~5! and intensity and amplitude convo
lutions, the development of the enhanced, relatively flat
at low E for the prediction~5!, significant differences be
tween the component distributions and Eq.~5! below the
peak inP(E2), and the fall off above the peak inP(E2) has

l

FIG. 4. The distributionP(log E)5P(log10 E) for the same pa-
rameters and using the same line styles as Fig. 3.
TABLE I. Gaussian and lognormal parameters for Figs. 3–8. Here,Ai5^Ei
2& or ^ log10 Ei& for a Gaussian

or lognormal component, respectively, withs i the corresponding standard deviation.

Figure Component 1 Component 2 A1 s1 A2 s2

3,4 Gaussian Gaussian 2000 1000 10000 3000
5 Gaussian lognormal 2000 1000 2.1 0.1

6,7 lognormal lognormal 1.2 0.2 2.1 0.1
8 lognormal lognormal 1.2–2.4 0.2 2.1 0.1
4-4
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FIELD STATISTICS OF TWO VECTORIALLY . . . PHYSICAL REVIEW E66, 066614 ~2002!
the same~lognormal! character as the component distributi
dominant at highE and the predictions~6! and~7!. Figure 7
displaysP(logE) for completeness.

An explanation is needed for the enhanced tail at lowE
for prediction~5! in Figs. 3–7. This tail is primarily due to
the vectorial nature of the convolution for two reasons. Fi
allowing nonaligned vectors in the vectorial convolution
the primary difference between~5! and predictions~6! and
~8!. Second, varying the nature and parameters of the c
ponent wave distributions does not affect the tail’s existe
and qualitative behavior but only its height. Consider t
case whenE1 andE2 are antiparallel and have very simila
magnitudes, so thatE5E11E2'0. This case is included in
Eq. ~5! but not in Eqs.~6! and ~7!, and clearly leads to a
significant contribution toP(E2) at low E. Specifically, Eq.
~5! has an integrable singularity forE2(E12E2)'0 corre-
sponding to cosu521. Thus, physically, the tail at smallE
for the prediction~5! corresponds to contributions withE1
'2E2. This implies that the tail will have a larger magn
tude when the two individual distributions have significa
overlap and will decrease as the overlap decreases and
individual distribution dominates the other~e.g., uE1u
@uE2u). Figure 8 confirms this prediction for the case of tw

FIG. 5. In the same format as in Fig. 3, the combined distri
tion P(E2) for the Gaussian and lognormal components descri
in Table I.

FIG. 6. The combined distributionP(E2) for the two lognor-
mals described in Table I, displayed in format of Fig. 3.
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lognormals: varying only the parameterm1 of one-wave
population to change the overlap of the two distributions,
tail height increases strongly as the overlap~and m1) in-
creases before peaking and then decreasing again asm1 ex-
ceedsm2. Figure 8 also shows that the combined distributi
~5! can have an approximate power-law form at highE ~e.g.,
the dotted and dash-dot curves! as discussed more in Se
III B.

These and analogous figures demonstrate that the full
torial convolution~5! differs markedly from the simpler in-
tensity and amplitude convolution results~6! and~8!, princi-
pally through the enhanced tail at lowE. Another general
result is that at largeE, near and above the peak in th
combined P(E2) distribution, predictions~5!–~9! differ
quantitatively but fall off very similarly to the dominant in
dividual distribution, defined as the distribution either ce
tered at or extending further to higherE. While amplitude or
intensity convolution is a reasonable approximation to
result~5! near and above the peak inP(E2), it clearly fails at
low E. Accordingly, the full vectorial result~5! should be
used in general.

-
d

FIG. 7. The combined distributionP(log E) corresponding to
Fig. 6, presented in format of Fig. 4.

FIG. 8. Evolution of the combined distributionP(E)2 ~thick
lines! given by Eq.~5! as a function of the overlap between tw
contributing lognormals. Holding the second lognormal const
(m252.1 ands250.1—thin dotted line!, the centroidm1 of the first
lognormal is 1.2~solid!, 1.6 ~dashed!, 2.0 ~dotted!, and 2.4~dash-
dot! for constants150.1. Here log[log10.
4-5
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B. Development of domains with apparent power-law character

Domains in which the distributionsP(E2) and P(logE)
appear to vary with a power-law form are important bo
theoretically and observationally, particularly in connecti
with the SOC and interpretations of observational data. It
already been shown that an approximateE2 form is typical
for theP(logE) distribution at lowE due to the slowly vary-
ing tail at low E for the P(E2) distribution~5!. The purpose
of this section is to show that combining a lognormal dis
bution with either a lognormal or Gaussian distribution c
also lead to the combined distribution~5! having a closely
power-law form in a restricted domain at highE. Since the
asymptotic form at high enoughE is still imposed by the
individual distribution which extends to higherE ~see Figs.
3–8!, these power-law regions occur at intermediateE, near
where the curvesP(E2) cross for the individual distributions
and a transition exists between which individual distributi
dominates at higherE.

These power-law domains at highE typically develop as
follows: a lognormal distribution is centered at lowE but has
large enoughs such that it extends to largerE than the
second, more intense, but narrower wave distribution, wh
may be either Gaussian or lognormal. Then, at high eno
E, the combined distribution~5! changes its functional form
from the one determined by the second distribution towa
that for the underlying highs lognormal, often leading to a
domain, in which the combined distribution appears pow
law. Note, moreover, that the lognormal distribution sho
an approximately linear slope in log-log plots for logE@m,
thereby appearing as a local power law. This is illustrated
Fig. 8 for the combination of two lognormals~e.g., see the
dotted and dash-dot curves! and in Fig. 9 below for the
lognormal-Gaussian combination.

Thus, as discussed in more detail below, the appearanc
approximately power-law statistics does not necessa
mean that an interpretation in terms of an intrinsic power-l
distribution~and SOC! is in order. Instead, the statistics ma
be due to the combination of two underlying wave distrib

FIG. 9. The observed distributionP(log E) for Vela at phase 450
~triangle symbols! is compared with the best fit~thick solid line! to
the prediction~5! for the combination of a Gaussian and a logno
mal component~thin dashed and dotted lines, respectively!. Here
log[log10. The fitting procedure and fit parameters are describe
the text.
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tions, at least one of which is lognormal with a large enou
s to dominate the other at large enoughE. It may not be
possible to reliably distinguish between these possibilit
unless the domain in logE ~and the number of counts in th
entire distribution! is large enough, ideally at least a deca
in logE.

IV. APPLICATION TO THE VELA PULSAR

Radio emissions from pulsars are well known to va
greatly in intensity, sometimes by more than an order
magnitude, both from pulse to pulse at a given phase
also between neighboring phases~time samples! within a
pulse despite each pulsar having a very well-defined pu
profile when averaged over thousands of pulses@30#. Re-
cently, a dataset of about 20 000 contiguous, rapi
sampled, and coherently dedispersed pulses was obtaine
the Vela pulsar@28,29#. The intensity was sampled 204
times per pulse, or about every 44ms, corresponding to
2048 ‘‘phase’’ bins for the pulsar’s rotation. First analyses
these data at a number of pulse phases@26# provide strong
evidence that the field statistics are lognormal, supporting
interpretation that pure SGT is relevant and strongly c
straining the emission mechanism and physics of the sou
However, at other pulse phases the observed field stati
either are not well fitted by a single lognormal component
appear approximately power-law at high fields above
Gaussian noise background. Here, the formalism and res
of Secs. II and III are applied to the Vela dataset, resulting
greatly improved fitting and understanding of the observ
field statistics and showing that the high-E power law is best
interpreted in terms of vector convolution of a Gauss
background component with an emerging lognormal com
nent ~cf. Sec. III B!. In addition, results at other phases a
best interpreted in terms of the combination of two under
ing lognormal distributions. A detailed analysis of these d
with vectorially combined two-component fits for a wid
range of pulsar phases is underway@31,32#.

Figure 9 shows theP(logE) distribution observed for

in

FIG. 10. Vela data~triangle symbols! and theoretical fits to Eq.
~5! for the distributionP(log E) at phase 510, with log[log10.
Thick solid and dashed lines show best fits for the doub
lognormal and Gaussian-lognormal combinations, respectiv
while thin dashed and dotted lines show the individual distributio
for the best-fit double-lognormal combination.
4-6
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phase 450~triangle symbols!, a phase at which the pulsar
above background but before the peak in the average pro
This distribution is obtained by binning the time series
data for this phase in logE and normalizing. Here,E is de-
fined by E25I in terms of the intensityI ~actually the flux
density, which equals the intensity divided by the detecto
20 MHz bandwidth!, measured in millijanskys~mJy! with
1 mJy510229 W m22 Hz21. In Fig. 9, note the approxi-
mately power-law variations, both above and below the pe
The thick solid line shows the result of fitting~5! for the
combination of one Gaussian and one lognormal distribut
obtained by minimizingx2 using the amoeba routine@33#.
The best-fit parameters areI 05E0

252900 mJy ands I

51300 mJy for the Gaussian, cf. Eq.~10!, andm51.13 and
s50.40 for the lognormal, cf. Eq.~11!. This fit agrees well
with the data and has good statistical significance:x2

533.9 with 26 bins, yielding a significance probabilityP
50.14. The fitted component distributions are shown w
dashed and dotted lines. In comparison, single-compo
Gaussian or lognormal fits clearly fail and have poor sta
tical significance (x2*103 and P,10220). Double-
lognormal fits are similarly poor for these data.

Analyses at other phases~not shown here@31,32#! clearly
demonstrate that the lognormal component evolves sig
cantly as a function of phase while the Gaussian compon
corresponds primarily to the Gaussian field statistics
served off pulse, where measurement noise and sky b
ground dominate. This figure is thus important for two re
sons. First, it demonstrates that these pulsar data are
fitted by the combination of a Gaussian~noise! component
and an emerging lognormal component~which dominates in-
creasingly in the phase range 460–540!. Second, it provides
an explicit experimental demonstration that apparen
power-law probability distributions can be due to vector
convolution of two underlying component distributions, ne
ther of which have power-law statistics. Care must, the
fore, be taken in interpreting apparently power-law statist

Figure 10 addresses Vela data for phase 510, which
pear strongly lognormal. The best fit to Eq.~5! for two log-
normal component distributions~thick solid line! has m1
52.2, s150.10, m251.3, and s250.11 in Eq. ~11!. It
agrees very well with the data and has good statistical
nificance:x2521.1 for 15 bins, yieldingP50.14. The cor-
responding Gaussian-lognormal fit hasx251551 and mini-
mal statistical significance~thick dashed line!. Thin dashed
and dotted lines delineate the underlying component dis
butions for the double-lognormal combination, with one b
ing located at small logE&1.8. The fits for the double
lognormal and Gaussian-lognormal differ primarily in th
tail at low logE&1.8, with the Gaussian-lognormal comb
nation significantly overpredicting the tail’s level. Accord
ingly, the combined distribution~5! can be used to discrimi
nate between the form of the underlying distributions ev
when one distribution is primarily localized at much low
fields than the other.

V. DISCUSSION OF THE VELA DATA

The foregoing analyses show that Vela’s variability is w
modeled in terms of a lognormal component that domina
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at high E and is the dominant contributor to the pulsar
emission, superposed with either a Gaussian or a second
normal component at lowE. Lognormal statistics are consis
tent with SGT and inconsistent with, first, the power-la
statistics expected for SOC or nonlinear self-focusing ins
bilities, or driven thermal waves@5,6,21,13,15# and, second,
the flat P(logE) distribution expected for uniform secula
growth @8#. This means that Vela’s field statistics are cons
tent with the source plasma being in an SGT state@26#: the
pulsar’s emission corresponds to a plasma instability ope
ing stochastically near marginal stability, with self-consiste
wave-particle interactions occurring in a plasma with ind
pendently prescribed inhomogeneities. The source is no
an SOC state.

The radio emission mechanism is also strongly co
strained by the observed statistics. The absence of intri
power-law statistics at highE for these phases is inconsiste
with nonlinear self-focusing instabilities being importan
contrary to several previous suggestions@34–36#. Similarly,
the absence of a cutoff in the lognormal distributions at h
E is inconsistent with a nonlinear decay process being
portant. Thus, these data are consistent with the Vela puls
emission mechanism being linear@26#, either generating ra-
diation directly by a linear instability in an SGT state
indirectly via linear mode conversion of nonescaping wav
driven by a linear instability in an SGT state. These analy
and associated theoretical interpretations provide strong
dence that pulsar radiation is often generated by linear p
cesses, complementing recent purely theoretical argum
@37,38#.

The origin of the second lognormal component has
been addressed before. The simplest possibility is that it
second, weaker, emission produced in an SGT system
cated in either the same or, more probably, a different sou
region. Evolution of the second component from Gauss
intensity statistics to lognormal statistics~and then back!
across the source is then interesting. If the Gaussian com
nent were solely instrumental noise then it should be pres
and unchanging at all phases. Since scattering can lea
Gaussian intensity statistics@1#, these changes in the Gaus
ian component at some phases may be interpretable, so
what speculatively, in terms of scattering and propagat
effects acting on an intrinsically lognormal component, w
the lognormal component escaping with minimal scatter
at other phases. Further work is required to test this interp
tation.

Before proceeding to discuss other applications of the
malism, it is cautioned that pulsar emission mechanisms m
potentially vary from phase to phase and from pulsar to p
sar. This is evidenced by observations of power-law fi
statistics for so-called giant pulses from the Crab pulsar
some millisecond pulsars@39–41#, as well as for so-called
giant micropulses from phases 430 to 434, only, for the V
pulsar @28,29#. The indices observed for theseP(E) distri-
butions, ranging from'24 to 27, are not inconsistent with
those expected@12,13# for the nonlinear self-focusing pro
cess of wave collapse@32#. These variations emphasize th
importance of field statistics for understanding remote sp
and astrophysical sources.
4-7
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The formalism developed in this paper should be imm
diately applicable to other pulsars, as well as to other ra
emissions from solar system and other astrophysical sou
Possible candidates include Jovian ‘‘S’’ bursts @22#, solar ra-
dio bursts, and astrophysical masers. The formalism, perh
adapted to consider signal detection with a one-dimensio
rotating spacecraft antenna, also is relevant to superpos
of plasma waves. Known examples of such superpositi
are currently treated by restricting analysis to highE well
above the background~where the form of the combined dis
tribution agrees closely with the dominant component
Sec. III’s analyses! or else assuming ad function inE for the
second component. They include:~1! the near-Earth sola
wind and edge of Earth’s foreshock, where radio waves
above f p occur with thermal Langmuir waves and drive
thermal Langmuir waves, respectively@15#, ~2! waves near
f p occur with whistler-mode hiss belowf p over Earth’s polar
cap @25#, and ~3! bursty Langmuir waves occur with
whistler-mode hiss at auroral latitudes in and above Ear
ionosphere@42#.

VI. CONCLUSIONS

Statistics of wave fields can be used to constrain the ph
ics of the emission mechanism and source reg
@6–12,14,15,17–20,23–27,31,32#. Superposition of waves
generated by several mechanisms or in several sources
make it difficult to interpret the statistics. Accordingly, a
analytic expression for the field statistics resulting from v
tor superposition of two-component field distributions h
been derived and the resulting two-dimensional integ
solved numerically. This probability distribution for two vec
torially combined fields differs, in general, from both th
component distributions and the distributions resulting fr
amplitude or intensity convolution. It typically follows th
qualitative form of the dominant individual component
high E, but not at fields below the peak, where a significa
tail develops. This low-E tail has no counterpart in the pre
dictions for amplitude or intensity convolution, instead r
sulting from vector convolution of approximately antiparal
vectors of similar magnitude from the two-component dis
butions. It is most prominent when the two individual dist
butions overlap substantially.

Approximately power-law distributions can develop
high E from vector convolution of a lognormal with either
lognormal or Gaussian, with neither individual distributio
being power law. At lowE below the peak, a power law
develops in the combinedP(logE) distribution when the tail
is approximately flat in theP(E2) distribution, correspond-
ing to individual components having substantial overlap
high E, both for lognormal-lognormal and Gaussia
lognormal combinations. At intermediate but highE a
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power-law tail can develop in a restricted domain ofE, near
where a lognormal centered at lowE, but with large variance
s2, eventually dominates a second, narrower distribut
centered at higherE than the first. Similarly, at highE, a
lognormal distribution may appear power law over a limit
range ofE. Care must, thus, be taken in interpreting appro
mate power-law distributions in terms of SOC, SGT, and
vectorial combinations of signals without intrinsic power-la
distributions.

These predictions are illustrated using recent data fr
the Vela pulsar, with major implications for pulsar physic
They are found to fit well, both quantitatively and with hig
statistical significance, with Gaussian-lognormal and doub
lognormal combinations applying in different phase doma
that cover most of Vela’s pulse profile. The Gaussia
lognormal fits are appropriate at phases where the obse
distributionsP(logE) andP(E2) have nearly power-law do
mains at largeE: these power laws are thus not intrinsic b
correspond to vector convolution of two non-power-law d
tributions. These data are best interpreted in terms of
pulsar’s emissions having lognormal statistics at th
phases. This is strong evidence that the emissions are g
ated in an SGT system, corresponding to a plasma instab
operating near marginal stability in an inhomogeneo
plasma. Moreover, the absence of intrinsic power-law sta
tics or cutoffs in these distributions is consistent with t
radiation being generated by a purely linear instability, eith
directly or else indirectly via linear mode conversion of no
escaping waves produced by an instability, and inconsis
with SOC or nonlinear self-focusing mechanisms propo
previously. The utility and power of field statistical tech
niques, as well as the richness of pulsar physics, is emp
sized by pointing out that giant pulses from other pulsars
giant micropulses from Vela~in a distinct, very localized,
range of phases from those analyzed here! have power-law
statistics with indices not inconsistent with nonlinear se
focusing instabilities. Finally, the theoretical predictions p
sented and illustrated here are expected to be widely ap
cable to plasma waves and radiation propagating from sp
and astrophysical sources or observed in laboratory
space plasmas. More generally, this research is relevan
the analysis and interpretation of field statistics for wav
growing in inhomogeneous media, such as optical fibres
other materials with randomly embedded lasers, and perh
ocean acoustics.
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